离子交换树脂 编辑 讨论3
离子交换树脂是带有官能团(有交换离子的活性基团)、具有网状结构、不溶性的高分子化合物。通常是球形颗粒物。离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。
孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。
离子交换树脂 基本形态
离子交换树脂 基本形态
系阳离子命名方式编辑
离子交换树脂的命名方式:
离子交换产品的型号以三位阿拉伯数字组成,**位数字代表产品的分类,*二位数字代表骨架的差异,*三位数字为顺序号用以区别基因、交联剂等的差异。**、*二位
湿离子交换树脂
湿离子交换树脂
数字的意义,见表8-1。
表8-1 树脂型号中的一、二位数字的意义
代号 0 1 2 3 4 5 6
分类名称 强酸性 弱酸性 强碱性 弱碱性 螫合性 两性 氧化还原性
骨架名称 苯乙烯系丙烯酸系 醋酸系 环氧系 乙烯吡啶系 脲醛系 氯乙烯系
大孔树脂在型号前加“D”,凝胶型树脂的交联度值可在型号后用“×”号连接阿拉伯数字表示。如D011×7,表示大孔强酸性丙烯酸系阳离子交换树脂,其交联度为7。
国外一些产品用字母C代表阳离子树脂(C为cation的**个字母),A代表阴离子树脂(A为Anion的**个字母),如Amberlite的IRC和IRA分别为阳树脂和阴树脂,亦分别代表阳树脂和阴树脂。基本类型编辑
强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个
离子交换树脂弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。
弱碱性阴离子树脂
这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液
离子交换树脂
离子交换树脂
中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生离子树脂的转型
以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。
。
离子树脂的转型
离子交换树脂
反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
离子交换树脂的变质
不落的**336 |2018-06-30 | 4.5分(**78.14%的文档)|2335|41 |简介 | 举报 手机打开
共享文档
离子交换树脂的变质、污染与复苏 一、离子交换树脂的变质 离子交换树脂在水处理系统运行的过程中,由于氧化或降解,树脂结构遭受破坏,这是一种不可逆的树脂的劣化,成为树脂的变质。 (一)阳离子交换树脂的氧化 1.阳树脂氧化的原因和现象 阳树脂氧化的主要原因是由于水中有氧化剂,如游离氯、硝酸根等,水中重金属离子能起催化作用,当温度高时,树脂受氧化剂浸蚀更为严重,其结果是使树脂交换基团降解和交换骨架断裂,树脂颜色变淡和其体积增大。 2.防止树脂被氧化的方法 (1)活性炭过滤 用活性炭过滤水进行脱氧是防止树脂被氧化的常用方法,其原理是基于吸附作用,并在被吸附的活性炭表面上进行下面的化学反应。其反应为: C -+HOCl→CO-+HCl 活性炭脱氯是一种简单、经济、行之有效的方法,故得到普通应用。 (2)化学还原法 化学还原法是在含有余氯的水中,投加一定量还原剂(如SO2或Na2SO3)进行脱氯。 (3)选用高交联度的大孔阳树脂。 (4)避免使用质量差的盐酸 其中含有氧化剂对阳树脂造成危害。 (二)强碱性阴树脂的降解 在离子交换水处理系统中,强碱性阴树脂通常是置于阳树脂后使用,一般是遭受水中溶解氧的氧化,以及再生过程中碱中所含的氧化剂(如ClO3- 和FeO42- )的氧化,其结果是强碱性季铵基团逐渐降解,但不会发生骨架的断链。在化学除盐工艺中,强碱性阴树脂的降解主要表现为对中性盐的分解容量,特别是对硅的交换容量下降。 季铵基团受氧化后,按叔、仲、伯胺顺序降解的过程如下:
CH3 CH3
R—N CH3 [O] R—N [O] R═N—CH3 [O] R≡N 非碱性物质
CH3 CH3 2.防止强碱性阴树脂降解的方法 (1) 真空除气法 通过使用真空除气器,减少阴床进水中的氧含量。 (2)降低再生液中含铁量 降低再生液中含铁良,必须认真做好碱液系统中的铁的腐蚀控制。 (3)选用隔膜法生产的烧碱,降低碱液中NaClO3的含量(可降至6~7㎎/L)。 二、离子交换树脂的污染与复苏 在离子交换处理系统中,由于水中杂质浸入,至使树脂性能下降,因尚未涉及树脂结构的破坏,故这种劣化现象称树脂的污染。树脂的污染是一个可逆的过程,也就是当树脂被污染后,通过适当的处理,可以恢复其交换性能,这种处理称为树脂的复苏。 (一) 铁对树脂的污染 1.污染的现象 阳阴树脂都可能发生铁的污染,被铁污染的树脂的颜色明显变深,甚至呈黑色;铁污染 会使树脂床层的压降增加和可能导致偏流;严重降低交换容量和再生效率;会使树脂含水量增加;还会使阴树脂加速降解。 2.污染的原因 在阳树脂的使用中,原水带入的铁离子大部分以Fe2+ 存在,它们被树脂吸附后,部分被氧化为Fe3+ ,再生时这些铁离子不能完全被H+ 交换出来。这是由于形成的高价铁化合物,牢固地沉积在树脂内部和表面,堵塞了树脂微孔,从而影响了孔道扩散,造成铁的污染。在水的预处理中,使用铁盐作混凝剂时,部分矾花被带入阳床,由于树脂层的过滤作用,矾花被积聚在树脂表面,再生时,酸液溶解了矾花,使之成为Fe3+ 也会形成铁污染。一般用于软化水处理的纳离子交换的阳树脂,更容易受到铁的污染。 铁对阴树脂污染的原因主要是再生用的烧碱溶液中含有Fe2O3和NaClO3,它们生成高铁酸盐(如FeO43+ )。高铁酸盐随碱液进入阴床后,因pH值降低,发生分解反应:
2FeO42++10H+ 2Fe3++3/2O2+5H2O
专业经销陶氏(罗门哈斯)离子交换与吸附树脂
广告 安澜德和您针对具体应用:如制药和食品,催化和金属回收,饮用水等,优选出适宜的树脂 查看详情 >
购买化学试剂离子交换树脂就上摩贝试剂商城!
广告 专业提供采购试剂离子交换树脂,试剂,中间体,定制,全品类一站式试剂电商平台 查看详情 >
Fe3+ 进一步形成Fe(OH)3。随着于阴树脂颗粒表面上,造成铁的污染。 3.鉴别的方法 取一定量被铁污染的树脂用清水洗净,并浸泡在食盐水溶液中再生半小时左右,倾去食 盐水溶液,再用蒸馏水洗剂2~3次,从中取出一部分树脂放入具塞试管中,加入两倍树脂体积的6 mol/L盐酸溶液,盖严震荡15分钟后。取出一部分酸液至另一试管中,并滴入饱和亚铁氰化钾溶液,如果形成普鲁士蓝沉淀,即可判断出有铁污染。根据普鲁士蓝颜色的深浅,可判定其铁污染的程度,颜色越深,铁污染越严重。 4.树脂的复苏 一般情况,没100g树脂中含铁量**过150mg时,就要进行复苏。对于树脂表面的铁化 合物,可用4%连二亚硫酸钠Na2SO4溶液浸泡4~12h,也可配用EDTA、三乙酸铵和酒石酸等络合剂进行综合处理;对于树脂内部积结的铁化合物,可用10%的HCl浸泡5~12h,或配用其他络合剂协同复苏处理。 强碱性阴树脂被铁污染后,在用酸复苏前,必须先转为Cl型树脂,以防用酸液复苏时,发生酸碱中和反应时放热而损坏树脂。弱碱性阴树脂则无此问题。 5.防止铁污染的方法 (1)减少阳床进水的含铁量,对含铁量高的地下水,应采用曝气处理和孟砂过滤除铁。对含铁量高的地表水或使用铁盐作为混凝剂时,应添加一定量的碱性物质,如Ca(OH)2或NaOH,提高水的pH值,从而提高混凝的效果,防止铁离子进入阳床。 (2)对输送高含盐量原水的管道及贮槽,应采取防腐措施,减少水中含铁量。 (3)阴床再生用烧碱的贮槽及输送管道,应采用衬胶进行防腐,以减少再生碱液中的铁含量。 (二)铝对树脂的污染 1.污染的现象 在交换器内,有铝化合物的絮凝体覆盖在树脂表面上,致使树脂交换容量降低。 2.污染的原因 通常采用铝盐进行水的混凝处理时,因沉淀或过滤效果不好,而进入离子交换器内所致。由于Al3+ 与树脂的交换基团有很强的吸附作用,故用食盐水溶液再生也难以除去。一般铝的污染在软化水处理系统中的阳树脂要比除盐水系统中的阳树脂严重。 3.树脂的复苏
对有色物的吸附
糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素的吸附较弱。这被认为是由于前两者通常带负电,而焦糖的电荷很弱。
通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。这种选择性在稀溶液中较大,在浓溶液中较小。
膨胀度
离子交换树脂含有大量亲水基团,与水接触即吸水膨胀。当树脂中的离子变换时,如阳离子树脂由H+转为Na+,阴树脂由Cl-转为OH-,都因离子直径增大而发生膨胀,增大树脂的体积。通常,交联度低的树脂的膨胀度较大。在设计离子交换装置时,必须考虑树脂的膨胀度,以适应生产运行时树脂中的离子转换发生的树脂体积变化。
中文名称:离子交换树脂
英文名称:Amberlite XAD-16
英文别名:Amberlite(r) xad-16; amberlite(r) xad-16 nonionic polymeric adsorbent; supelclean envi-chrom p, 50 grams; amberchrom 161c, 50gm; amberchrom 161c 100ml; amberlite xad-16, -7, -4 resin; amberlite xad-15 nonionic polymeric adsorbent; amberlitet la-2, ion exchange resin, liquid grade; amberlite la-2; ion exchange resin
CAS:104219-63-8;11128-96-4
树脂颗粒尺寸
离子交换树脂通常制成珠状的小颗粒,它的尺寸也很重要。树脂颗粒较细者,反应速度较大,但细颗粒对液体通过的阻力较大,需要较高的工作压力;特别是浓糖液粘度高,这种影响更显著。因此,树脂颗粒的大小应选择适当。如果树脂粒径在0.2mm(约为70目)以下,会明显增大流体通过的阻力,降低流量和生产能力。
树脂颗粒大小的测定通常用湿筛法,将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50……目筛网上的留存量,以90%粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。多数通用的树脂产品的有效粒径在0.4~0.6mm之间。
树脂颗粒是否均匀以均匀系数表示。它是在测定树脂的“有效粒径”坐标图上取累计留存量为40%粒子,相对应的筛孔直径与有效粒径的比例。如一种树脂(IR-120)的有效粒径为0.4~0.6mm,它在20目筛、30目筛及40目筛上留存粒子分别为:18.3%、41.1%、及31.3%,则计算得均匀系数为2.0。

-/gbaajcd/-
http://nnjj6866.cn.b2b168.com